TTS Pre-processing Issues for Mixed Language Support

Paulseph-John Farrugia

University of Malta

CSAW '04

Presentation Outline

- Introduction to the relevance of pre-processing for Text-to-Speech (TTS).
- Description of issues specific to the domain under focus, that of SMS messages written in mixed Maltese and English.
- Illustration of techniques with which to address these issues.
- Overview of preliminary implementations and indications for future work.

Introduction

Human Text Processing

Reading Misspelled Text

"Aoccdrnig to rscheearch at an Elingsh uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, olny taht the frist and Isat Itteres are at the rghit pcleas. The rset can be a toatl mses and you can sitll raed it wouthit a porbelm. Tihs is bcuseae we do not raed ervey Iteter by ilstef, but the wrod as a wlohe. Fnnuy how the mnid wroks, eh? ..."

Human Text Processing

Reading Misspelled Text

"Aoccdrnig to rscheearch at an Elingsh uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, olny taht the frist and Isat Itteres are at the rghit pcleas. The rset can be a toatl mses and you can sitll raed it wouthit a porbelm. Tihs is bcuseae we do not raed ervey Iteter by ilstef, but the wrod as a wlohe. Fnnuy how the mnid wroks, eh? ..."

- As humans, we can process unstructured and heavily misspelt texts with impressive ease.
- Implementing the same kind of flexibility programmatically is not a simple task.

The Pre-processor

- In a TTS system, the preprocessor provides the first stage of input processing, organising the input text into a standard format that the following modules can process more easily. ([Dutoit, 1997])
- Amongst other things, it is generally responsible for converting numerals and acronyms into their textual interpretation and resolving punctuation.
- Some pre-processing issues are common across input domains (e.g. number, date and acronym handling.)
- Others are specific to the type of input under examination.
 (e.g. mail message structure handling.)

Mixed Language Support

Pre-processing SMS Messages

Example

"jaqaw bdejt tibza tixel il car? xorta qajjimt il qattusa u issa qed tajjat wara il bieb. bring that btl of last time plz qalbi :)"

- A "rough" domain, which is particularly ill-formatted.
- Generally contains Maltese, English or a mixture of both (65% English, 25% Maltese, 10% other).
- Also contains various shorthands, smileys and spelling errors.
- A real-world system would need to find the means to address these issues in a robust manner.

Code Switching

- As Maltese, we exhibit a tendency to code switch for various reasons.
- A means to classify words as belonging to a particular language is required.
- Use of a lookup dictionary is not sufficient.
- Two main language classification techniques:
 - Use of short word frequencies. [Grefenstette, 1995]
 - Use of n-gram probabilities.
 [Beesley, 1988, Cavnar and Trenkle, 1994]
- A formalization of the latter approach, appropriate for our purposes, is given.

Definitions

- Let C be a set of characters.
- Let $L = \{L_1, L_2, ..., L_n\}$ be a set of n candidate languages.
- For each L_i , let $C_i = \{c_1, c_2, \ldots, c_m\}, C_i \subset \mathbb{C}$.
- Let $P_{L}(a,b)$ be the probability of bigram ab in L_i text
- Let $\mathbf{w} = w_1 w_2 \dots w_k$ be an arbitrary word.

Definitions

- Let C be a set of characters.
- Let $L = \{L_1, L_2, ..., L_n\}$ be a set of n candidate languages.
- For each L_i , let $C_i = \{c_1, c_2, \ldots, c_m\}, C_i \subset \mathbf{C}$.
- Let $P_{L_i}(a,b)$ be the probability of bigram ab in L_i text
- Let $\mathbf{w} = w_1 w_2 \dots w_k$ be an arbitrary word

Definitions

- Let C be a set of characters.
- Let $L = \{L_1, L_2, ..., L_n\}$ be a set of n candidate languages.
- For each L_i , let $C_i = \{c_1, c_2, \ldots, c_m\}, C_i \subset \mathbf{C}$.
- Let $P_{L_i}(a,b)$ be the probability of bigram ab in L_i text.
- Let $\mathbf{w} = w_1 w_2 \dots w_k$ be an arbitrary word

$$Pw_{L_i}(\mathbf{w}) = \prod_{i=0}^k P_{L_i}(w_i, w_{i+1})$$

Definitions

- Let C be a set of characters.
- Let $L = \{L_1, L_2, ..., L_n\}$ be a set of n candidate languages.
- For each L_i , let $C_i = \{c_1, c_2, \ldots, c_m\}, C_i \subset \mathbf{C}$.
- Let $P_{L_i}(a,b)$ be the probability of bigram ab in L_i text.
- Let $\mathbf{w} = w_1 w_2 \dots w_k$ be an arbitrary word.

$$Pw_{L_i}(\mathbf{w}) = \prod_{i=0}^{k} P_{L_i}(w_i, w_{i+1})$$

Definitions

- Let C be a set of characters.
- Let $L = \{L_1, L_2, ..., L_n\}$ be a set of n candidate languages.
- For each L_i , let $C_i = \{c_1, c_2, \ldots, c_m\}, C_i \subset \mathbf{C}$.
- Let $P_{L_i}(a,b)$ be the probability of bigram ab in L_i text.
- Let $\mathbf{w} = w_1 w_2 \dots w_k$ be an arbitrary word.

$$Pw_{L_i}(\mathbf{w}) = \prod_{i=0}^{k} P_{L_i}(w_i, w_{i+1})$$

Definitions

- Let C be a set of characters.
- Let $\mathbf{L} = \{L_1, L_2, \dots, L_n\}$ be a set of n candidate languages.
- For each L_i , let $C_i = \{c_1, c_2, ..., c_m\}, C_i \subset \mathbf{C}$.
- Let $P_{L_i}(a,b)$ be the probability of bigram ab in L_i text.
- Let $\mathbf{w} = w_1 w_2 \dots w_k$ be an arbitrary word.

$$Pw_{L_i}(\mathbf{w}) = \prod_{i=0}^{k} P_{L_i}(w_i, w_{i+1})$$

Character Set Support

- Electronic input devices often do not support: c, Ċ, ħ, Ħ, għ, Għ, ż, Ż.
- Unicode should in theory help solve this problem, but in practice it is not in widespread use yet.
- In practice, the following are adopted:
 - A non-standard (font-based) replacement scheme.
 - Adoption of escape sequences representation in ASCII.
 - Replacement with their counterparts: c, C, h, H, gh, Gh, z,
 Z.
- A "Spell-Checking" Problem
 - Fixed re-write rules: $c \Rightarrow \dot{c}$.
 - Dictionary use: żarbun but not zarbun.
 - Stocasthic/Heuristic re-write rules.

Preliminary Results

Corpora Selection

- In order to estimate the n-gram probabilities, suitable corpora for the languages under consideration is required.
- In order for the probabilities to be meaningful, the corpora are required to be substantially large, and ideally from the same domain as the text that needs to be classified.
- Unfortunately, corpora consisting solely of SMS messages already organised as Maltese or English are not readily available, and deriving substantially sized ones would be a very time consuming exercise.
- An alternative textual corpus is available in the form of the Laws of Malta.

Calculation Frequencies

- The laws are available in PDF format were thus extracted to plain text files.
- The resulting files contained some spurious symbols and characters (such as used for formatting or page numbering). However, given that these made up only a very small percentage of the overall corpora, they would have negligible effect on the overall frequency calculation results.
- For Maltese, two versions were created, one in Unicode and one with the non-ASCII Maltese characters replaced by their ASCII counterparts.
- These were used as the basis for a language classification application that tags whitespace separated tokens according to the maximal $Pw_{l_s}(\mathbf{w})$.

Preliminary Results

- The language classifier was applied to a set of whitespace separated tokens taken from SMS messages with no pre-filtering.
- From hand-checking, this basic, unpolished, process yields a 76% accuracy ratio.
- Analysing the results one finds plenty of room for improvement.
 - No attempt was done to pre-filter the input from non-lexical items, such as smileys and punctuation.
 - Some of the input was in languages other than Maltese and English.

Conlusions & Possible Improvements

- Tendency to fail on short (single letter) words.
- Tagging of 'l' as Maltese impact of the chosen corpora.
 - Use of dictionary or |Pw_{Maltese}(w) Pw_{English}(w)| as a confidence level.
 - Feedback tagged text for self-improvement.
- Tagging of 'u' as Maltese a more ambiguous situation as it can occur in both languages (in English as short for 'you.') Taking the surrounding context into consideration is necessary in order to resolve the ambiguity.
 - Multi-pass approach using a context window.

For Further Reading

- Dutoit, T. (1997).
 - An Introduction to Text-To-Speech Synthesis, volume 3 of Text, Speech and Language Technology.
- Grefenstette, G. (1995).
 Comparing two language identification schemes.
- Cavnar, W. B. and Trenkle, J. M. (1994). N-gram-based text categorization.
- Beesley, K. (1988). Language identifier: A computer program for automatic natural-language identification of on-line text.

Discussion Time